Water Chlorination
Permanent water chlorination began in 1905, when a faulty slow sand filter and a contaminated water supply led to a serioustyphoidfever epidemic in Lincoln, England Dr. Alexander Cruickshank Houston used chlorination of the water to stem the epidemic. His installation fed a concentrated solution of chloride of lime to the water being treated. The chlorination of the water supply helped stop the epidemic and as a precaution, the chlorination was continued until 1911 when a new water supply was institute
Rate:
The first continuous use of chlorine in the United States for disinfection took place in 1908 at Boonton Reservoir (on the Rockaway River), which served as the supply for Jersey City, New Jersey Chlorination was achieved by controlled additions of dilute solutions of chloride of lime (calcium hypochlorite) at doses of 0.2 to 0.35 ppm. The treatment process was conceived by Dr. John L. Leal and the chlorination plant was designed by George Warren Fulle Over the next few years, chlorine disinfection using chloride of lime were rapidly installed in drinking water systems around the world.
Chlorine readily combines with chemicals dissolved in water, microorganisms, small animals, plant material, tastes, odors, and colors. These components "use up" chlorine and comprise the chlorine demand of the treatment system. It is important to add sufficient chlorine to the water to meet the chlorine demand and provide residual disinfection.
The chlorine that does not combine with other components in the water is free (residual) chlorine, and the breakpoint is the point at which free chlorine is available for continuous disinfection. An ideal system supplies free chlorine at a concentration of 0.3-0.5 mg/l. Simple test kits, most commonly the DPD colorimetric test kit (so called because diethyl phenylene diamine produces the color reaction), are available for testing breakpoint and chlorine residual in private systems. The kit must test free chlorine, not total chlorine